Il y a tout juste 50 ans, un groupe de physiciens découvrait un nouveau quark, « brique » de base des protons et des neutrons. Récit par l’un de ses découvreurs.
Au début des années 1970, les physiciens des particules disposaient de deux imposants centres d’accélérateurs pour étudier l’infiniment petit : l’européen CERN à Genève et l’américain Brookhaven près de New York. Chacun abritait un accélérateur de protons de 620 m de circonférence pouvant atteindre l’énergie alors faramineuse de 25 GeV. L’unité d’énergie est ici l’électron-volt (eV), 1eV étant l’énergie d’un électron traversant une tension de 1V. On emploie les multiples : keV (103), MeV (106) et GeV (109). Cela reste infinitésimal rapporté au monde ordinaire. 1 GeV, équivalent de la masse du proton, correspond à une énergie qui élèverait d’un milliardième de degré la température d’un gramme d’eau !
Grâce à ces machines, la physique multipliait le nombre de particules élémentaires en suivant une recette simple : bombardant une cible avec un faisceau de protons accélérés, on analysait les particules qui sortaient. On accumula ainsi environ 200 types d’objets élémentaires, en particulier de nombreuses résonances.
Qu’est-ce qu’une résonance ? Alors que les particules telles que protons, électrons, pions, kaons… peuvent être suivies sur des distances macroscopiques, les résonances se désintègrent dès leur création en donnant deux ou trois particules qu’il s’agit d’associer pour retrouver la résonance originelle. Empiriquement, on remarqua que plus leur masse était élevée, plus leur temps de vie était court jusqu’à atteindre 10-23 s. La discipline languissait depuis plusieurs années sans direction bien assurée devant un zoo hétéroclite à l’aspect assez brouillon.
Le jeu de Lego des quarks
200 objets élémentaires pour construire le monde, ce ne pouvait pas être le mot de la fin. Heureusement, les physiciens Murray Gell-Mann d’une part, et George Zweig d’autre part suggérèrent l’existence de constituants plus élémentaires à la base des particules répertoriées. Gell-Mann les appela quarks et montra que les 200 espèces connues pouvaient se comprendre comme assemblages de trois quarks différents qu’on nomme u, d et s. Zweig les appela « as » mais « quark », qui vient du roman de James Joyce Finnegans Wake, s’imposa.
Les quarks portent des charges électriques qui sont une fraction de la charge élémentaire de l’électron, respectivement +2/3 pour u et -1/3 pour d et s. Avec ces trois objets de base et trois antiquarks associés portant la charge opposée, on reconstruit deux familles de particules :
les baryons qui sont des triplets de quarks, par exemple uud et udd forment respectivement les protons et les neutrons ; les charges +1 et 0 sont bien restituées.
les mésons qui sont des paires associant un quark et un antiquark,
Avec les trois seuls dés à disposition, la nature construisait toutes les particules connues. Une association manquait, celle du baryon correspondant au triplet sss. C’était la prédiction du modèle. Une recherche fut menée et le « grand Ω » fut découvert à Brookhaven en 1964 à la masse prédite. Gell-Mann reçut le prix Nobel en 1969.
Toutes les particules connues ont une charge électrique +1, 0, -1 celle de l’électron. Des charges non entières supposées caractériser les quarks n’ont jamais été observées librement. Pourtant les quarks existent dans la mesure où ils opèrent au moment des interactions entre particules. Mais, dès qu’ils sont créés, ils « s’habillent » avec d’autres quarks ou antiquarks pour former les particules « réelles », baryons ou mésons. À notre niveau, les quarks restent des objets virtuels, nécessaires pour interpréter les observations.
Les quarks constituent le niveau le plus élémentaire de la matière explorée à ce jour. Leur « taille » est inférieure à 10-18 m alors que les particules qu’ils composent possèdent une taille mille fois supérieure.
La révolution du 10 novembre 1974
En sus des deux laboratoires majeurs cités, il existait des centres plus modestes. En France, une machine à protons fonctionnait à Saclay et une à électrons à Orsay. Il y avait aussi un dispositif en développement sur le campus de Stanford, cœur de la Silicon Valley, au sud de San Francisco. Le laboratoire, appelé SLAC, avait construit un accélérateur « dans le parking », c’est-à-dire entièrement financé sur les frais de fonctionnement, sans demande spécifique de budget, ce qui mérite aujourd’hui d’être souligné ! C’était un dispositif accélérant en sens inverse des électrons et des positrons dans un collisionneur de 80 m de diamètre, d’énergie maximale 4 GeV par faisceau. Il prit le nom de SPEAR, « Stanford Positron Electron Accelerator Ring ».
Autour d’un point d’interaction entre positrons et électrons, un détecteur de conception nouvelle fut construit pour mesurer au mieux tous les produits de la collision. C’était le premier détecteur hermétique qui couvrait tout l’espace pour ne rien laisser s’échapper. On l’appela Mark1.
L’expérience commença à prendre des données dès 1973 et elles étaient embarrassantes. L’ordinateur qui gérait la prise de données enregistrait environ une collision toutes les deux à trois minutes qu’il signalait en émettant un bref son. Ce taux était plusieurs fois supérieur à ce que prédisait la théorie.

On variait l’énergie en un balayage relativement grossier, en pas de 50 MeV : ainsi, on mesurait le taux de collisions à 2,550 GeV puis 2,600 GeV puis 2,650 GeV… Deux problèmes apparaissaient. Tout d’abord, comme déjà mentionné, le taux d’interaction s’avérait nettement plus élevé que prédit. De plus, les données prises à l’énergie nominale de 3,100 GeV en trois périodes différentes n’étaient pas en accord entre elles, deux périodes donnant des taux beaucoup plus élevés que la troisième. La reproductibilité de la physique semblait violée.
Le signal magique
Et alors, quelqu’un eut l’idée de faire un balayage beaucoup plus fin en énergie. Au lieu d’augmenter de 50 MeV en 50 MeV, on varierait l’énergie en pas plus serré de 2 MeV en 2 MeV. Et là, le miracle se révéla le 10 novembre 1974, c’était un dimanche. Nous étions trois ou quatre dans la salle de contrôle quand l’ordinateur, qui émettait son petit son à chaque nouvelle collision, au lieu de crépiter toutes les deux ou trois minutes, commença à accélérer le rythme. Ce fut le signal magique que tous nous espérions : entre les énergies de 3100 et 3120 MeV, le taux d’interactions, et donc le signal sonore de l’ordinateur, augmenta soudain d’un facteur 100. La « fusillade » dura quelques minutes. Puis, le pic découvert étant dépassé, l’ordinateur reprit son train-train de un coup en deux minutes.
Une structure manifeste s’était révélée, on venait de révéler une « résonance étroite » de masse 3096 MeV et de largeur 87 keV. Cette largeur indiquait un temps de vie 100 fois supérieur à l’attendu. On cherchait un profil de colline jurassienne et on découvrait un pic alpestre. Un phénomène totalement nouveau apparaissait.
Une publication fut vite écrite, signée par un groupe d’une trentaine de physiciens, contingent qui à l’époque semblait monstrueux et qui aujourd’hui s’avère bien modeste. Elle renouvela la vision du monde de l’infiniment petit et l’événement fut appelé la « révolution de novembre 74 »
Il fallait donner un nom. Quelques lettres grecques restaient libres et on choisit Ψ. Pourquoi cette particule possédait-elle une vie aussi longue ? L’interprétation n’était pas évidente. Deux écoles se disputèrent pendant une fébrile semaine au troisième étage du laboratoire où bivouaquaient les théoriciens, entre les tenants de la libération des couleurs, nouvelle « charge » imaginée pour associer les quarks entre eux, et ceux prônant l’apparition d’un nouveau quark. Le verdict tomba : l’expérience venait de découvrir le quatrième quark, appelé c pour charmé. Ceci complétait la liste des constituants élémentaires au-delà des trois quarks u, d et s introduits par Gell-Mann.
Et si un nouveau quark existe, il annonce toute une famille de particules charmées correspondant à toutes les combinaisons permises entre quatre quarks. Déjà, le 17 novembre, on trouvait le méson Ψ’ de masse 3700 MeV, autre avatar de ce qu’on a appelé le charmonium, qui associait un quark c à son anti-c.
Pourquoi « charme » ?
Comme pour les nouveau-nés, le nom charme vient de la facétie d’un parrain. En astronomie, les planètes portent les noms de dieux antiques. Pour les particules, on aurait pu les numéroter, on choisit de les classer selon l’alphabet, grec de préférence. Ainsi Δ, μ, Φ, Σ, Λ… presque toutes les lettres furent mises à contribution. Le grec était favorisé pour que la physique égale en respectabilité sa sœur, la philosophie. Mais, vers les années 1960, le langage évolua. Les nouveaux scientifiques, moins imprégnés de culture classique, passèrent à des noms plus prosaïques. Les particules étranges avec leur quark s (strange) avaient balisé la voie. Charm fut adopté pour le c, et l’histoire se répétera avec le quark b beau (ou bottom) et le quark t vrai (truth ou top). On sait aujourd’hui qu’avec ces six objets la liste des quarks est au complet, il n’y a plus rien à découvrir sur ce front.
Pour clore l’histoire, la même résonance fut découverte indépendamment en collisions de protons à Brookhaven, et là le groupe choisit le nom J. Cette lettre, étrangère au grec, ressemble à un caractère chinois qui s’épelle comme le patronyme de son découvreur. Et pour ne froisser personne, les physiciens continuent à appeler le méson charmé du nom un peu baroque de J/Ψ.