![[Hackathon] Machine Learning Approaches @ Halle aux Farines, salle 442C](https://u-paris.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Come and take part in the Graduate School Translational Bioinformatics workshop on machine learning theory applied to problem solving in the medical and biological sciences.This workshop will include both theoretical and practical sessions with multiple examples.
The objective
The focus of the sessions will be on demonstrating the strength of these methods and the scope of application, but also on raising awareness of their limitations. Emphasis will be placed on the importance of managing best practices and using them under the appropriate conditions.
Target Audience
PhD students (or post-docs) and Master’s students interested in training in Machine Learning and/or Deep Learning, applied to biological or biomedical data. This workshop is also open to students in medicine, biology or other courses, with the requirement that they have a basic knowledge of a programming language such as R or Python.
Speakers from Université Paris Cité
- Farah ELLOUZE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Tatiana GALOCHKINA, DSIMB team, UMR-1134, MCU
- Nicolas GARCELON, Data Science platform and Clinical Bioinformatics laboratory, IHU Institut Imagine
- Jean-Christophe GELLY, DSIMB team, UMR-1134, MCU
- Frédéric GUYON, DSIMB team, UMR-1134, IR
- Romain NICOLLE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Marc VINCENT, Data Science platform and Clinical Bioinformatics Laboratory, IHU Institut Imagine
Main Topics
Introduction to machine learning and the main concepts of supervised learning: loss function, model optimisation, model evaluation, under-fitting and over-fitting. Introduction to deep learning (DL) and its applications.
Convolution networks and their application to image processing. Practical work on medical images.
Advanced network architectures and language processing models: from recurrent networks to transformers. Entanglement of protein sequences.
Advanced topics in deep learning: graphical neural networks, federated learning, natural language processing (NLP).
Registration is free but mandatory (20 seats available)
This event is organized by Catherine ETCHEBEST (DSIMB team, UMR-1134) and Antonio RAUSELL (Clinical Bioinformatics laboratory, IHU Institut Imagine).
À lire aussi
Scientific event: la Graduate School Neuroscience met en lumière ses jeunes chercheuses et chercheurs
La Graduate School Neuroscience a organisé la troisième édition de son événement scientifique, permettant aux étudiantes et étudiants de l’ensemble de la Graduate School de présenter leurs travaux de recherche. Un rendez-vous devenu incontournable, rassemblant...
read more
SAMPLING : un projet lauréat d’une ERC Consolidator Grant qui se focalise sur les rythmes de l’attention
A l’occasion de l’obtention de deux prestigieuses bourses ERC Consolidator, l’Université Paris Cité revient à travers deux articles sur les projets lauréats : DiffeRS et SAMPLING. Ce dernier, coordonné par Laura Dugué, professeure en neurosciences cognitives et...
read more
Succès confirmé pour la 3ᵉ édition du Forum des carrières scientifiques et des métiers de la santé
Plus de 1 700 visiteurs en deux jours pour la 3ᵉ édition du forum organisé par la Ville de Saint-Ouen, l’Université Paris Cité et l’AP-HP. Les 7 et 8 novembre, la Serre Wangari a accueilli collégiens, lycéens et familles venus découvrir la diversité des métiers de la...
read more
[Bottom-up calls for projects – Circle U.] Internationalise your courses and missions at UPCité!
Université Paris Cité wishes to support the investment of its administrative staff and academics in Circle U.the European alliance. How? By funding up to 5,000€ projects such as organising international conferences, staff weeks, translating documents to propose...
read more