![[Hackathon] Machine Learning Approaches @ Halle aux Farines, salle 442C](https://u-paris.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Come and take part in the Graduate School Translational Bioinformatics workshop on machine learning theory applied to problem solving in the medical and biological sciences.This workshop will include both theoretical and practical sessions with multiple examples.
The objective
The focus of the sessions will be on demonstrating the strength of these methods and the scope of application, but also on raising awareness of their limitations. Emphasis will be placed on the importance of managing best practices and using them under the appropriate conditions.
Target Audience
PhD students (or post-docs) and Master’s students interested in training in Machine Learning and/or Deep Learning, applied to biological or biomedical data. This workshop is also open to students in medicine, biology or other courses, with the requirement that they have a basic knowledge of a programming language such as R or Python.
Speakers from Université Paris Cité
- Farah ELLOUZE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Tatiana GALOCHKINA, DSIMB team, UMR-1134, MCU
- Nicolas GARCELON, Data Science platform and Clinical Bioinformatics laboratory, IHU Institut Imagine
- Jean-Christophe GELLY, DSIMB team, UMR-1134, MCU
- Frédéric GUYON, DSIMB team, UMR-1134, IR
- Romain NICOLLE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Marc VINCENT, Data Science platform and Clinical Bioinformatics Laboratory, IHU Institut Imagine
Main Topics
Introduction to machine learning and the main concepts of supervised learning: loss function, model optimisation, model evaluation, under-fitting and over-fitting. Introduction to deep learning (DL) and its applications.
Convolution networks and their application to image processing. Practical work on medical images.
Advanced network architectures and language processing models: from recurrent networks to transformers. Entanglement of protein sequences.
Advanced topics in deep learning: graphical neural networks, federated learning, natural language processing (NLP).
Registration is free but mandatory (20 seats available)
This event is organized by Catherine ETCHEBEST (DSIMB team, UMR-1134) and Antonio RAUSELL (Clinical Bioinformatics laboratory, IHU Institut Imagine).
À lire aussi
Unlock Tech Transfer: une série de vidéos pour comprendre le processus d’innovation et le transfert de technologie
Le transfert de technologie reste souvent méconnu ou entouré d'idées reçues qui peuvent freiner l'innovation issue de nos laboratoires. Inscrite dans le cadre du projet ValoCité, Pôle Universitaire d’innovation de l’Université Paris Cité bénéficiaire du plan...
read more
[Cardiovascular Sciences] “Open UE”: looking back on an interdisciplinary adventure!
The “open UE”, launched by the Graduate School Cardiovascular Sciences, brought together researchers, clinicians, and experts from diverse fields for a week to explore major issues in biomedical and translational research. Open to all students across the 29 Graduate Schools of Université Paris Cité, it offered a unique space for learning and interdisciplinary exchange.
read more
Le 24 novembre 2025, la deuxième édition de Convergences a célébré l’alliance entre l’Université Paris Cité et l’Ecole nationale vétérinaire d’Alfort
Plus d’un an après la première édition de Convergences qui célébrait le partenariat de l’Université Paris Cité avec l’Institut Pasteur, cette deuxième édition qui s’est tenue le 24 novembre sur le site Odéon, célébrait l’alliance stratégique de l’Université Paris Cité...
read more
[Cardiovascular Sciences] UE d’ouverture : retour sur une aventure interdisciplinaire
L’UE d’ouverture, initiée par la Graduate School Cardiovascular Sciences, a réuni pendant une semaine des chercheuses et chercheurs, cliniciennes, cliniciens, expertes et experts de différents horizons pour explorer les grands enjeux de la recherche biomédicale et...
read more