![[Hackathon] Machine Learning Approaches @ Halle aux Farines, salle 442C](https://u-paris.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Come and take part in the Graduate School Translational Bioinformatics workshop on machine learning theory applied to problem solving in the medical and biological sciences.This workshop will include both theoretical and practical sessions with multiple examples.
 
			The objective
The focus of the sessions will be on demonstrating the strength of these methods and the scope of application, but also on raising awareness of their limitations. Emphasis will be placed on the importance of managing best practices and using them under the appropriate conditions.
Target Audience
PhD students (or post-docs) and Master’s students interested in training in Machine Learning and/or Deep Learning, applied to biological or biomedical data. This workshop is also open to students in medicine, biology or other courses, with the requirement that they have a basic knowledge of a programming language such as R or Python.
Speakers from Université Paris Cité
- Farah ELLOUZE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Tatiana GALOCHKINA, DSIMB team, UMR-1134, MCU
- Nicolas GARCELON, Data Science platform and Clinical Bioinformatics laboratory, IHU Institut Imagine
- Jean-Christophe GELLY, DSIMB team, UMR-1134, MCU
- Frédéric GUYON, DSIMB team, UMR-1134, IR
- Romain NICOLLE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Marc VINCENT, Data Science platform and Clinical Bioinformatics Laboratory, IHU Institut Imagine
Main Topics
Introduction to machine learning and the main concepts of supervised learning: loss function, model optimisation, model evaluation, under-fitting and over-fitting. Introduction to deep learning (DL) and its applications.
Convolution networks and their application to image processing. Practical work on medical images.
Advanced network architectures and language processing models: from recurrent networks to transformers. Entanglement of protein sequences.
Advanced topics in deep learning: graphical neural networks, federated learning, natural language processing (NLP).
Registration is free but mandatory (20 seats available)
This event is organized by Catherine ETCHEBEST (DSIMB team, UMR-1134) and Antonio RAUSELL (Clinical Bioinformatics laboratory, IHU Institut Imagine).
À lire aussi
 
															
					
												Une piste prometteuse pour augmenter l’efficacité des antibiotiques
Les aminosides sont des antibiotiques efficaces contre de très nombreuses bactéries telles que Escherichia coli, Pseudomonas aeruginosa ou Staphylococcus aureus. Mais jusqu’à présent, personne ne savait comment ces antibiotiques arrivaient à pénétrer dans les...
read more 
															
					
												Exposition « Étienne-Jules Marey : chronophotographie, sciences et arts » du 6 novembre au 18 février
Pour la quatrième année consécutive, la Direction déléguée aux bibliothèques et musées de l’Université Paris Cité s’associe au festival PhotoSaintGermain et vous invite à cette occasion à découvrir sa nouvelle exposition photo « Étienne-Jules Marey :...
read more 
															
					
												A look back at Fast Forward Open Science
On October 22, 2025, as part of International Open Access Week, the Circle U. Alliance, coordinated by Université Paris Cité, hosted the online event Fast Forward Open Science. This half-day of discussions brought together researchers, librarians, data experts, and...
read more![[Retour sur événement] Fast Forward Open Science](https://u-paris.fr/wp-content/uploads/2025/10/CC.-OPEN-ACCESS-WEEK-2-1080x675.png) 
															
					
												[Retour sur événement] Fast Forward Open Science
Le 22 octobre 2025, à l’occasion de la Semaine internationale du libre accès (International Open Access Week), l’alliance Circle U. et l’Université Paris Cité ont organisé en ligne l’événement Fast Forward Open Science. Cette demi-journée d’échanges a réuni des...
read more