L’analyse géochimique d’échantillons vieux de 4 milliards d’années a permis d’identifier les processus ayant menés à leurs formations. Une équipe dirigée par des scientifiques de l’IPGP démontre ainsi que la tectonique des plaques était déjà opérationnelle très tôt dans l’histoire de la planète et que l’atmosphère de la Terre primitive était alors riche en CO2.
© M. Antonelli, 2010
La Terre est la seule planète connue dans notre système solaire qui présente une tectonique de plaques active et une croûte dite continentale qui se différencie de la croûte océanique par sa haute teneur en silice. Le tectonique des plaques, ou dérive des continents, se caractérise par la création de nouvelle croûte océanique au niveau des dorsales et par l’enfouissement de cette croûte sous les continents dans des zones dites de subduction.
De nombreux phénomènes géologiques, comme les séismes ou certaines éruptions volcaniques, sont ainsi liés à ce processus de tectonique des plaques qui a participé à faire évoluer la surface terrestre jusqu’à la morphologie que nous lui connaissons actuellement.
Mais la période de l’histoire de la Terre à partir de laquelle la subduction a été opérationnelle reste discutée au sein de la communauté scientifique. En effet les températures, plus élevées au sein de la Terre primitive, auraient pu retarder sa mise en place au cours du 1ier milliards d’années de notre planète. Les témoins des processus à l’œuvre sur la jeune Terre sont rares, du fait justement du recyclage de la croûte par la tectonique des plaques, mais des granitoïdes très anciens sont toujours présents à la surface du globe et représentent des échantillons précieux de la formation des premiers continents.
Dans une étude publiée le 5 mai dans la revue Nature Communication, une équipe internationale de scientifiques de l’institut de physique du globe de Paris, des universités de Paris, Clermont-Auvergne, de Waterloo au Canada et du Massachusetts Institute of Technology aux USA, a étudié les abondancs des isotopes du calcium dans des échantillons de granitoïdes anciens, grâce à une technique d’analyse géochimique de pointe, permettant d’apporter deux nouvelles informations sur les processus profonds mais aussi sur les conditions environnementales qui régnaient sur la Terre primitive.
Grâce à la mesure de l’abondance des isotopes du calcium, l’étude montre que les roches granitoïdes formant les plus anciens continents connus (4 milliards d’années) ont été produits à des gradients géothermiques compris entre 500 et 750°C/GPa, les mêmes que ceux observés dans certaines zones de subduction modernes ce qui indique que des processus de subduction étaient en cours il y a au moins 4 milliards d’années.
En outre, la signature des isotopes du calcium dans d’autres échantillons de granitoïdes, vieux de 3,8 milliards d’années, démontre que la croûte océanique recyclée par subduction pour former ces granitoïdes contenait des sédiments carbonatés océaniques. Des carbonates marins étaient donc déjà présents à la surface de la Terre à cette époque. Ces résultats précèdent de 100 millions d’années les unités carbonatées océaniques les plus anciennes préservées aujourd’hui.
Cette découverte est particulièrement importante car pour que ces carbonates précipitent et sédimentent au fond des océans, l’atmosphère terrestre devait contenir une grande quantité de CO2. Ce qui est en accord avec les modèles atmosphériques aujourd’hui proposés pour expliquer les températures nécessaires pour expliquer la présence d’eau liquide dans la Terre primitive alors que la luminosité du soleil était plus faible à cette époque (le paradoxe du soleil jeune).
Cette étude confirme que les processus de subductions et les précipitations de carbonates océaniques ont commencé à se produire il y a au moins 4 milliards d’années, suggérant que la tectonique des plaques et le cycle silicate-carbonate ont commencé très tôt dans l’histoire de la Terre.
À lire aussi
HARVEST Day : une journée fédératrice pour un projet structurant de l’Université Paris Cité
Lauréat de l’appel à projets ASDESR1 de l’ANR, le projet HARVEST (Holistic Acceleration Roadmap for Vocational training and European participation STrategy) de l’Université Paris Cité a pour objectif d’accompagner la mise en œuvre d’une politique de développement...
Sciences Po et l’Université Paris Cité organisent une série de trois masterclasses
Dans le cadre du partenariat Université Paris Cité – Sciences Po, un appel à candidatures pour des professeures et professeurs invités a été lancé. C’est dans ce cadre qu’une série de trois masterclasses est organisée ce semestre avec trois professeures invitées...
Les impacts négatifs des aliments ultra-transformés sur la santé
Une série de trois articles consacrés aux conséquences sur la santé de la consommation d’aliments ultra-transformés a été publiée le 19 novembre 2025 dans la revue The Lancet. La cohorte française NutriNet-Santé, pilotée par l’équipe Cress-Eren...
L’informatique quantique et la physique quantique expliquées autrement
2025 est l’année internationale des sciences et technologies quantiques. Dans ce cadre, l’Université Paris Cité revient sur des actions importantes en lien avec le quantique menées en son sein. L’informatique quantique et la physique quantique sont aujourd’hui des...