![[Workshop] Approches d'apprentissage automatique par la Graduate School Translational Bioinformatics @ Halle aux Farines, salle 442C](https://u-paris.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Venez participer au workshop de la Graduate School Translational Bioinformatics sur la théorie de l’apprentissage automatique et ses applications à la résolution de problèmes en sciences médicales et biologiques. Ce workshop comprendra à la fois des sessions théoriques et pratiques avec de multiples exemples.
L’objectif
Les participantes et participants travailleront avec différents types de données biomédicales et apprendront à choisir la meilleure architecture de modèle, adaptée à chaque tâche. L’objectif principal des sessions sera de leur démontrer la puissance de ces méthodes et leur champ d’application, mais aussi de prendre conscience de leurs limites. Une attention particulière sera accordée à la gestion des bonnes pratiques et à leur utilisation dans des conditions appropriées.
La cible
Doctorantes et doctorants (ou post-doc), étudiantes et étudiants inscrits en Master, intéressés par une formation en Machine Learning et/ou Deep Learning, appliquée aux données biologiques ou biomédicales. Ce workshop accueille également les étudiantes et étudiants en médecine, en biologie ou d’autres formations, avec pour critère : des connaissances de base d’un langage de programmation comme R ou Python.
Les intervenants d’Université Paris Cité
- Farah ELLOUZE, laboratoire de Bioinformatique Clinique, IHU Institut Imagine
- Tatiana GALOCHKINA, équipe DSIMB, UMR-1134, MCU
- Nicolas GARCELON, plateforme de science des données et laboratoire de bio-informatique clinique, IHU Institut Imagine
- Jean-Christophe GELLY, équipe DSIMB, UMR-1134, MCU
- Frédéric GUYON, équipe DSIMB, UMR-1134, IR
- Romain NICOLLE, laboratoire de Bioinformatique Clinique, IHU Institut Imagine
- Marc VINCENT, plateforme de science des données et laboratoire de bio-informatique clinique, IHU Institut Imagine
Thèmes abordés
- Introduction à l’apprentissage automatique et aux principaux concepts de l’apprentissage supervisé : fonction de perte, optimisation du modèle, évaluation du modèle, sous-adaptation et sur adaptation. Introduction à l’apprentissage profond (DL) et ses applications.
- Réseaux de convolution et leur application au traitement d’images. Travaux pratiques sur des images médicales.
- Architectures de réseaux avancées et modèles de traitement du langage : des réseaux récurrents aux transformateurs. Enchâssement de séquences de protéines.
- Sujets avancés de l’apprentissage profond : réseaux neuronaux graphiques, apprentissage fédéré, traitement du langage naturel (NLP).
L’inscription est gratuite mais obligatoire (20 places disponibles)
Cet évènement est organisé par Catherine Etchebest (équipe DSIMB, UMR-1134) et Antonio RAUSELL (Laboratoire de Bio-informatique Clinique, IHU Institut Imagine).
À lire aussi
Événement scientifique : la Graduate School Neuroscience met en lumière ses jeunes chercheuses et chercheurs
La Graduate School Neuroscience a organisé la troisième édition de son événement scientifique, permettant aux étudiantes et étudiants de l’ensemble de la Graduate School de présenter leurs travaux de recherche. Un rendez-vous devenu incontournable, rassemblant...
lire plus
SAMPLING : un projet lauréat d’une ERC Consolidator Grant qui se focalise sur les rythmes de l’attention
A l’occasion de l’obtention de deux prestigieuses bourses ERC Consolidator, l’Université Paris Cité revient à travers deux articles sur les projets lauréats : DiffeRS et SAMPLING. Ce dernier, coordonné par Laura Dugué, professeure en neurosciences cognitives et...
lire plus
Appel à candidatures pour des chercheurs américains à l’Université Paris Cité et Sciences Po
Engagées à soutenir la recherche au plus haut niveau grâce à leur partenariat, l'Université Paris Cité et Sciences Po lancent un appel à candidatures à destination de chercheuses et chercheurs invités en provenance des États-Unis. Déposez votre candidature avant le 30...
lire plus
Quantum Signals et TUPHO : deux exemples d’innovation quantique à l’Université Paris Cité
2025 est l’année internationale des sciences et technologies quantiques. Dans ce cadre, l’Université Paris Cité revient sur des actions importantes en lien avec le quantique menées en son sein. L’informatique quantique et la physique quantique présentent aujourd’hui...
lire plus