En combinant les méthodes d’apprentissage machine et de calcul intensif avec des équations thermodynamiques, une équipe internationale dirigée par des scientifiques de l’Institut de physique du globe de Paris a mis au point un modèle numérique qui prédit les propriétés physiques de différentes laves fondues et des verres associés. Ce modèle innovant, en cours d’extension vers des compositions naturelles, ouvre ainsi des perspectives pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux, afin de résoudre des problèmes en sciences des matériaux et en géosciences, en modélisant notamment la dynamique des éruptions volcaniques en fonction de la composition des laves…
© IPGP
De l’écran de smartphone à la lave des volcans, les verres sont omniprésents dans les objets du quotidien et dans la nature. Mais malgré cette importance, aucun modèle n’existe à l’heure actuelle pour prédire les propriétés et la structure des verres les plus communs : les aluminosilicates.
Ces aluminosilicates fondus constituent la partie liquide des magmas et laves, qui ont joué et jouent toujours un rôle primordial dans l’évolution de notre planète. Ainsi, après l’accrétion de notre jeune Terre, la dynamique des océans magmatiques primordiaux a influencé l’initiation de la tectonique des plaques et la formation des premiers continents. Aujourd’hui, les magmas continuent d’influencer l’histoire de notre planète via les éruptions volcaniques qui façonnent la surface terrestre. De plus, la dynamique effusive ou explosive de ces éruptions est un sujet de recherche actif, du fait des enjeux sociétaux majeurs que représentent les crises volcaniques, en terme de gestion des aléas et risques directs ou indirects des éruptions, comme montré actuellement par l’éruption du Cubre Vieja à La Palma, dans l’archipel des Canaries.
Mais malgré l’importance de ces verres et magmas aluminosilicatés, aucun modèle global ne permet de prédire leurs propriétés structurales et thermodynamiques. En effet, même s’ils ont une composition de base commune, ces propriétés varient très fortement en fonction de la présence d’éléments supplémentaires, de leur structure atomique, ou des température et conditions de refroidissements…
Dans une étude internationale innovante, publiée en ligne le 28 août 2021 dans le revue Geochimica Cosmochimica Acta, des scientifiques de l’Institut de physique du globe de Paris, d’Université Paris Cité et du CNRS et leurs collègues de l’Australian National University en Australie, de la Carnegie Institution for Science aux États-Unis et de l’université de Durham au Royaume-Uni, ont combiné les méthodes de calcul intensif du Deep Learning, sur la nouvelle plateforme de calcul intensif DANTE, commune à l’IPGP et au laboratoire APC (CNRS, Université Paris Cité), avec les dernières connaissances physiques et thermodynamiques sur les aluminosilicates fondus et vitreux. Le modèle ainsi créé, nommé i-Melt, permet des prédictions des propriétés structurales et thermodynamiques de laves fondues et de leurs verres, et notamment leur viscosité, leur entropie de configuration, ou leur température de transition liquide-verre. Le modèle i-Melt permet aussi la prédiction des propriétés des verres formés par trempe rapide de ces liquide, comme par exemple la densité, l’indice de réfraction optique ou encore le spectre Raman, signature vibrationnelle de la structure atomique du verre.
Ce modèle, pour l’instant limité à une composition simplifiée des aluminosilicates fondus (système Na2O-K2O-Al2O3-SiO2) est en cours d’extension vers des compositions naturelles, ouvrant ainsi des perspectives importantes pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux. Il devrait permettre de résoudre des problèmes en sciences des matériaux (formation de nouveaux verres, étude de leur propriétés…) et en géosciences (dynamique des éruptions volcaniques en fonction de la composition des laves, prédiction des propriétés dynamiques des magmas constituant les océans magmatiques primordiaux…). Cette étude confirme aussi l’apport de la combinaison du machine learning avec les théories physiques et thermodynamiques existantes pour répondre à des problématiques en sciences de la Terre et des matériaux.
Référence :
Charles Le Losq, Andrew P. Valentine, Bjorn O. Mysen, Daniel R. Neuville, Structure and properties of alkali aluminosilicate glasses and melts: Insights from deep learning, Geochimica et Cosmochimica Acta, Volume 314, 2021,
À lire aussi
26 Highly Cited Researchers 2024 : 26 citations pour l’université Paris Cité
Avec 26 mentions en première affiliation, l’université Paris Cité assoit sa position qui confirme l’influence de sa communauté de recherche au niveau mondial. Université Paris Cité félicite ces 26 highly cited researchers.
lire plus[Retour sur la conférence La Guilde] L’Intelligence artificielle dans l’enseignement supérieur et la recherche : débats et perspectives
Le 6 novembre 2024, l’université Paris Cité et l’Université PSL ont réuni les communautés des universités membres du réseau La Guilde lors d’un événement consacré à l’intelligence artificielle et son impact sur les universités, au sein du PariSanté Campus. Stéphanie...
lire plusFIRE-UP : un projet structurant au service des grands axes de transformation de l’université Paris Cité
Dans le cadre de sa stratégie d’établissement, l’université Paris Cité coordonne plusieurs projets visant à accompagner la transformation interne de l’établissement et ses interactions avec le territoire. Parmi ces projets figure FIRE-UP, (renForcer...
lire plusDoctorat et entreprise : défis et opportunités pour les doctorantes et doctorants d’UPCité
À la suite de la remise du rapport sur la valorisation du doctorat dans les entreprises, nous avons rencontré Raphaël Porcher, directeur du collège des écoles doctorales de l’université Paris Cité.
lire plus