En combinant les méthodes d’apprentissage machine et de calcul intensif avec des équations thermodynamiques, une équipe internationale dirigée par des scientifiques de l’Institut de physique du globe de Paris a mis au point un modèle numérique qui prédit les propriétés physiques de différentes laves fondues et des verres associés. Ce modèle innovant, en cours d’extension vers des compositions naturelles, ouvre ainsi des perspectives pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux, afin de résoudre des problèmes en sciences des matériaux et en géosciences, en modélisant notamment la dynamique des éruptions volcaniques en fonction de la composition des laves…
© IPGP
De l’écran de smartphone à la lave des volcans, les verres sont omniprésents dans les objets du quotidien et dans la nature. Mais malgré cette importance, aucun modèle n’existe à l’heure actuelle pour prédire les propriétés et la structure des verres les plus communs : les aluminosilicates.
Ces aluminosilicates fondus constituent la partie liquide des magmas et laves, qui ont joué et jouent toujours un rôle primordial dans l’évolution de notre planète. Ainsi, après l’accrétion de notre jeune Terre, la dynamique des océans magmatiques primordiaux a influencé l’initiation de la tectonique des plaques et la formation des premiers continents. Aujourd’hui, les magmas continuent d’influencer l’histoire de notre planète via les éruptions volcaniques qui façonnent la surface terrestre. De plus, la dynamique effusive ou explosive de ces éruptions est un sujet de recherche actif, du fait des enjeux sociétaux majeurs que représentent les crises volcaniques, en terme de gestion des aléas et risques directs ou indirects des éruptions, comme montré actuellement par l’éruption du Cubre Vieja à La Palma, dans l’archipel des Canaries.
Mais malgré l’importance de ces verres et magmas aluminosilicatés, aucun modèle global ne permet de prédire leurs propriétés structurales et thermodynamiques. En effet, même s’ils ont une composition de base commune, ces propriétés varient très fortement en fonction de la présence d’éléments supplémentaires, de leur structure atomique, ou des température et conditions de refroidissements…
Dans une étude internationale innovante, publiée en ligne le 28 août 2021 dans le revue Geochimica Cosmochimica Acta, des scientifiques de l’Institut de physique du globe de Paris, d’Université Paris Cité et du CNRS et leurs collègues de l’Australian National University en Australie, de la Carnegie Institution for Science aux États-Unis et de l’université de Durham au Royaume-Uni, ont combiné les méthodes de calcul intensif du Deep Learning, sur la nouvelle plateforme de calcul intensif DANTE, commune à l’IPGP et au laboratoire APC (CNRS, Université Paris Cité), avec les dernières connaissances physiques et thermodynamiques sur les aluminosilicates fondus et vitreux. Le modèle ainsi créé, nommé i-Melt, permet des prédictions des propriétés structurales et thermodynamiques de laves fondues et de leurs verres, et notamment leur viscosité, leur entropie de configuration, ou leur température de transition liquide-verre. Le modèle i-Melt permet aussi la prédiction des propriétés des verres formés par trempe rapide de ces liquide, comme par exemple la densité, l’indice de réfraction optique ou encore le spectre Raman, signature vibrationnelle de la structure atomique du verre.
Ce modèle, pour l’instant limité à une composition simplifiée des aluminosilicates fondus (système Na2O-K2O-Al2O3-SiO2) est en cours d’extension vers des compositions naturelles, ouvrant ainsi des perspectives importantes pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux. Il devrait permettre de résoudre des problèmes en sciences des matériaux (formation de nouveaux verres, étude de leur propriétés…) et en géosciences (dynamique des éruptions volcaniques en fonction de la composition des laves, prédiction des propriétés dynamiques des magmas constituant les océans magmatiques primordiaux…). Cette étude confirme aussi l’apport de la combinaison du machine learning avec les théories physiques et thermodynamiques existantes pour répondre à des problématiques en sciences de la Terre et des matériaux.
Référence :
Charles Le Losq, Andrew P. Valentine, Bjorn O. Mysen, Daniel R. Neuville, Structure and properties of alkali aluminosilicate glasses and melts: Insights from deep learning, Geochimica et Cosmochimica Acta, Volume 314, 2021,
À lire aussi
Une bourse ERC Synergy Grant pour sonder les premiers instants de l’Univers
Andrii Neronov, astrophysicien spécialisé en cosmologie, est lauréat d’un ERC Synergy Grant pour le projet COSMOMAG. Avec ses collègues internationaux, il souhaite percer les secrets de l’Univers et comprendre les phénomènes physiques survenus dans les tout premiers...
lire plus
Rechutes du cancer du sein : découverte d’un mécanisme de résistance cellulaire clé
Un mécanisme de résistance cellulaire à l’origine de rechutes du cancer du sein triple négatif vient d’être découvert par une équipe de l'Université Paris Cité, du CNRS et de l’Institut Curie. Ces résultats ont été publiés dans la revue Cancer Research, a journal of...
lire plus
Université Paris Cité : foyer de deux grandes communautés quantiques
2025 est l’année internationale des sciences et technologies quantiques. Dans ce cadre, l’Université Paris Cité revient sur des actions importantes en lien avec le quantique menées en son sein. L’équipe Algorithmique et Complexité de l’IRIF - Institut de Recherche en...
lire plus
Leucémies aiguës chez l’enfant : une exposition à la pollution de l’air dès la naissance pourrait être un facteur de risque
Une équipe de l’Inserm, en collaboration avec l’Université Paris Cité, l’Université Sorbonne Paris Nord et INRAE a utilisé les données issues de l’étude GEOCAP-Birth, fondée sur le registre national des cancers de l’enfant, pour évaluer le risque de leucémie aiguë en...
lire plus