En combinant les méthodes d’apprentissage machine et de calcul intensif avec des équations thermodynamiques, une équipe internationale dirigée par des scientifiques de l’Institut de physique du globe de Paris a mis au point un modèle numérique qui prédit les propriétés physiques de différentes laves fondues et des verres associés. Ce modèle innovant, en cours d’extension vers des compositions naturelles, ouvre ainsi des perspectives pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux, afin de résoudre des problèmes en sciences des matériaux et en géosciences, en modélisant notamment la dynamique des éruptions volcaniques en fonction de la composition des laves…

© IPGP
De l’écran de smartphone à la lave des volcans, les verres sont omniprésents dans les objets du quotidien et dans la nature. Mais malgré cette importance, aucun modèle n’existe à l’heure actuelle pour prédire les propriétés et la structure des verres les plus communs : les aluminosilicates.
Ces aluminosilicates fondus constituent la partie liquide des magmas et laves, qui ont joué et jouent toujours un rôle primordial dans l’évolution de notre planète. Ainsi, après l’accrétion de notre jeune Terre, la dynamique des océans magmatiques primordiaux a influencé l’initiation de la tectonique des plaques et la formation des premiers continents. Aujourd’hui, les magmas continuent d’influencer l’histoire de notre planète via les éruptions volcaniques qui façonnent la surface terrestre. De plus, la dynamique effusive ou explosive de ces éruptions est un sujet de recherche actif, du fait des enjeux sociétaux majeurs que représentent les crises volcaniques, en terme de gestion des aléas et risques directs ou indirects des éruptions, comme montré actuellement par l’éruption du Cubre Vieja à La Palma, dans l’archipel des Canaries.
Mais malgré l’importance de ces verres et magmas aluminosilicatés, aucun modèle global ne permet de prédire leurs propriétés structurales et thermodynamiques. En effet, même s’ils ont une composition de base commune, ces propriétés varient très fortement en fonction de la présence d’éléments supplémentaires, de leur structure atomique, ou des température et conditions de refroidissements…
Dans une étude internationale innovante, publiée en ligne le 28 août 2021 dans le revue Geochimica Cosmochimica Acta, des scientifiques de l’Institut de physique du globe de Paris, d’Université Paris Cité et du CNRS et leurs collègues de l’Australian National University en Australie, de la Carnegie Institution for Science aux États-Unis et de l’université de Durham au Royaume-Uni, ont combiné les méthodes de calcul intensif du Deep Learning, sur la nouvelle plateforme de calcul intensif DANTE, commune à l’IPGP et au laboratoire APC (CNRS, Université Paris Cité), avec les dernières connaissances physiques et thermodynamiques sur les aluminosilicates fondus et vitreux. Le modèle ainsi créé, nommé i-Melt, permet des prédictions des propriétés structurales et thermodynamiques de laves fondues et de leurs verres, et notamment leur viscosité, leur entropie de configuration, ou leur température de transition liquide-verre. Le modèle i-Melt permet aussi la prédiction des propriétés des verres formés par trempe rapide de ces liquide, comme par exemple la densité, l’indice de réfraction optique ou encore le spectre Raman, signature vibrationnelle de la structure atomique du verre.
Ce modèle, pour l’instant limité à une composition simplifiée des aluminosilicates fondus (système Na2O-K2O-Al2O3-SiO2) est en cours d’extension vers des compositions naturelles, ouvrant ainsi des perspectives importantes pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux. Il devrait permettre de résoudre des problèmes en sciences des matériaux (formation de nouveaux verres, étude de leur propriétés…) et en géosciences (dynamique des éruptions volcaniques en fonction de la composition des laves, prédiction des propriétés dynamiques des magmas constituant les océans magmatiques primordiaux…). Cette étude confirme aussi l’apport de la combinaison du machine learning avec les théories physiques et thermodynamiques existantes pour répondre à des problématiques en sciences de la Terre et des matériaux.
Référence :
Charles Le Losq, Andrew P. Valentine, Bjorn O. Mysen, Daniel R. Neuville, Structure and properties of alkali aluminosilicate glasses and melts: Insights from deep learning, Geochimica et Cosmochimica Acta, Volume 314, 2021,
À lire aussi

Ma Thèse en 180s : les inscriptions sont ouvertes pour l’édition 2026
Université Paris Cité participe à la 13e édition du concours international de pays francophones Ma thèse en 180 secondes.Tous les doctorants, doctorantes et jeunes docteurs des établissements membres de l’Alliance Sorbonne Paris Cité (ASPC) peuvent candidater.Les...
lire plus
Erwan Dianteill reçoit le prix d’Histoire des religions à l’Institut de France
Professeur d'anthropologie à l'Université Paris Cité, Erwan Dianteill a obtenu le prestigieux prix d'Histoire des religions (Fondation Pierre-Antoine Bernheim), à l'Académie des Belles Lettres - Institut de France, ce vendredi 3 octobre 2025. Son ouvrage L’Oracle et...
lire plus
Fête de la Science 2025 : plongez au cœur des Intelligences
Du 3 au 13 octobre 2025, l'Université Paris Cité vous ouvre ses portes pour dix jours d’expériences, de découvertes, d'ateliers et de rencontres. Une programmation riche et conviviale animera nos différents sites et campus tout au long de l’événement. Temps fort de...
lire plus
L’Université Paris Cité mobilisée pour la santé mentale : grande cause nationale en 2025
Anxiété, dépression, addictions, isolement… La santé mentale est au cœur des préoccupations, en particulier chez les jeunes. Déclarée Grande cause nationale en 2025, elle fait l’objet d’une mobilisation à laquelle l’Université Paris Cité participe pleinement, en...
lire plus