En combinant les méthodes d’apprentissage machine et de calcul intensif avec des équations thermodynamiques, une équipe internationale dirigée par des scientifiques de l’Institut de physique du globe de Paris a mis au point un modèle numérique qui prédit les propriétés physiques de différentes laves fondues et des verres associés. Ce modèle innovant, en cours d’extension vers des compositions naturelles, ouvre ainsi des perspectives pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux, afin de résoudre des problèmes en sciences des matériaux et en géosciences, en modélisant notamment la dynamique des éruptions volcaniques en fonction de la composition des laves…

© IPGP
De l’écran de smartphone à la lave des volcans, les verres sont omniprésents dans les objets du quotidien et dans la nature. Mais malgré cette importance, aucun modèle n’existe à l’heure actuelle pour prédire les propriétés et la structure des verres les plus communs : les aluminosilicates.
Ces aluminosilicates fondus constituent la partie liquide des magmas et laves, qui ont joué et jouent toujours un rôle primordial dans l’évolution de notre planète. Ainsi, après l’accrétion de notre jeune Terre, la dynamique des océans magmatiques primordiaux a influencé l’initiation de la tectonique des plaques et la formation des premiers continents. Aujourd’hui, les magmas continuent d’influencer l’histoire de notre planète via les éruptions volcaniques qui façonnent la surface terrestre. De plus, la dynamique effusive ou explosive de ces éruptions est un sujet de recherche actif, du fait des enjeux sociétaux majeurs que représentent les crises volcaniques, en terme de gestion des aléas et risques directs ou indirects des éruptions, comme montré actuellement par l’éruption du Cubre Vieja à La Palma, dans l’archipel des Canaries.
Mais malgré l’importance de ces verres et magmas aluminosilicatés, aucun modèle global ne permet de prédire leurs propriétés structurales et thermodynamiques. En effet, même s’ils ont une composition de base commune, ces propriétés varient très fortement en fonction de la présence d’éléments supplémentaires, de leur structure atomique, ou des température et conditions de refroidissements…
Dans une étude internationale innovante, publiée en ligne le 28 août 2021 dans le revue Geochimica Cosmochimica Acta, des scientifiques de l’Institut de physique du globe de Paris, d’Université Paris Cité et du CNRS et leurs collègues de l’Australian National University en Australie, de la Carnegie Institution for Science aux États-Unis et de l’université de Durham au Royaume-Uni, ont combiné les méthodes de calcul intensif du Deep Learning, sur la nouvelle plateforme de calcul intensif DANTE, commune à l’IPGP et au laboratoire APC (CNRS, Université Paris Cité), avec les dernières connaissances physiques et thermodynamiques sur les aluminosilicates fondus et vitreux. Le modèle ainsi créé, nommé i-Melt, permet des prédictions des propriétés structurales et thermodynamiques de laves fondues et de leurs verres, et notamment leur viscosité, leur entropie de configuration, ou leur température de transition liquide-verre. Le modèle i-Melt permet aussi la prédiction des propriétés des verres formés par trempe rapide de ces liquide, comme par exemple la densité, l’indice de réfraction optique ou encore le spectre Raman, signature vibrationnelle de la structure atomique du verre.
Ce modèle, pour l’instant limité à une composition simplifiée des aluminosilicates fondus (système Na2O-K2O-Al2O3-SiO2) est en cours d’extension vers des compositions naturelles, ouvrant ainsi des perspectives importantes pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux. Il devrait permettre de résoudre des problèmes en sciences des matériaux (formation de nouveaux verres, étude de leur propriétés…) et en géosciences (dynamique des éruptions volcaniques en fonction de la composition des laves, prédiction des propriétés dynamiques des magmas constituant les océans magmatiques primordiaux…). Cette étude confirme aussi l’apport de la combinaison du machine learning avec les théories physiques et thermodynamiques existantes pour répondre à des problématiques en sciences de la Terre et des matériaux.
Référence :
Charles Le Losq, Andrew P. Valentine, Bjorn O. Mysen, Daniel R. Neuville, Structure and properties of alkali aluminosilicate glasses and melts: Insights from deep learning, Geochimica et Cosmochimica Acta, Volume 314, 2021,
À lire aussi

IUF 2025 : félicitations aux 11 lauréates et lauréats de l’Université Paris Cité
Cette année, 11 enseignantes-chercheures et enseignants-chercheurs d’UPCité ont été nommés membres de l’Institut Universitaire de France (IUF). À compter du 1er octobre 2025, et pour une durée de cinq ans, les 6 chaires juniors et 5 chaires seniors offriront aux...
lire plus
P.A.R.I.S lance sa chaire de recherche sur l’éducation au développement durable à l’Université Paris Cité
Dans le cadre de FIRE-UP, projet structurant de l’Université Paris Cité, P.A.R.I.S* (pour Programme d’Accompagnement et de Recherche en Innovation Soutenable) soutient l’intégration des enjeux socio-écologiques dans les enseignements et l'accompagnement à...
lire plus
Raphaël Gaillard, professeur de psychiatrie à l’Université Paris Cité, a fait son entrée à l’Académie française
Raphaël Gaillard, professeur de psychiatrie à l'Université Paris Cité, a officiellement été reçu sous la Coupole de l’Académie française le jeudi 22 mai 2025. À 47 ans, il devient l’un des plus jeunes membres élus dans l’histoire de l’institution. © Académie Française...
lire plus
Fête de la Science 2025 : Appel à propositions
Participez à la Fête de la Science 2025 et partagez votre passion avec le grand public autour du thème « Intelligence(s) », un sujet riche et pluridisciplinaire accessible à toutes et tous. Proposez dès maintenant vos animations pour la prochaine édition qui se...
lire plus